Big Data

Big Data PDF
Author: Bernard Marr
Publisher: John Wiley & Sons
ISBN: 1118965833
Size: 78.74 MB
Format: PDF, Mobi
Category : Business & Economics
Languages : un
Pages : 256
View: 1059

Get Book

Convert the promise of big data into real world results There is so much buzz around big data. We all need to know what it is and how it works - that much is obvious. But is a basic understanding of the theory enough to hold your own in strategy meetings? Probably. But what will set you apart from the rest is actually knowing how to USE big data to get solid, real-world business results - and putting that in place to improve performance. Big Data will give you a clear understanding, blueprint, and step-by-step approach to building your own big data strategy. This is a well-needed practical introduction to actually putting the topic into practice. Illustrated with numerous real-world examples from a cross section of companies and organisations, Big Data will take you through the five steps of the SMART model: Start with Strategy, Measure Metrics and Data, Apply Analytics, Report Results, Transform. Discusses how companies need to clearly define what it is they need to know Outlines how companies can collect relevant data and measure the metrics that will help them answer their most important business questions Addresses how the results of big data analytics can be visualised and communicated to ensure key decisions-makers understand them Includes many high-profile case studies from the author's work with some of the world's best known brands

Smart Data Analytics

Smart Data Analytics PDF
Author: Andreas Wierse
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110461919
Size: 59.77 MB
Format: PDF, Mobi
Category : Technology & Engineering
Languages : un
Pages : 440
View: 3867

Get Book

Wenn in Datenbergen wertvolle Geheimnisse schlummern, aus denen Profit erzielt werden soll, dann geht es um Big Data. Doch wie schöpft man aus »großen Daten« echte Werte, wenn man nicht gerade Google ist? Um aus Unternehmens-, Maschinen- oder Sensordaten einen Ertrag zu erzielen, reicht Big Data-Technologie allein nicht aus. Entscheidend sind die übergeordneten Innovations prozesse: die smarte Analyse von Big Data. Erst durch den kompetenten Einsatz der richtigen Werkzeuge und Techniken werden aus Big Data tatsächlich Smart Data. Das Praxishandbuch Smart Data Analytics gibt einen Überblick über die Technologie, die bei der Analyse von großen und heterogenen Datenmengen – inklusive Echtzeitdaten – zum Einsatz kommt. Elf Praxisbeispiele zeigen die konkrete Anwendung in kleinen und mittelständischen Unternehmen. So erfahren Sie, wie Sie Ihr Smart Data Analytics-Projekt in Ihrem eigenen Unternehmen vorbereiten und umsetzen können. Das Buch erläutert neben den organisatorischen Aspekten auch die rechtlichen Rahmenbedingungen. Und es zeigt, wie Sie sowohl den Nutzen bewerten können, der aus den Daten gezogen werden soll, als auch den Aufwand, den Sie dafür betreiben müssen. Denn Smart Data steht für mehr als nur die Untersuchung großer Datenmengen: Smart Data Analytics ist der Schlüssel zu einem smarten Umgang mit Ihren Unternehmensdaten und hilft, bislang unentdecktes Potenzial zu entdecken. Dr. Andreas Wierse studierte Mathematik und promovierte in den Ingenieurwissenschaften im Bereich Visualisierung, seit 2011 unterstützt er mittelständische Unternehmen rund um Big und Smart Data Technologie. Dr. Till Riedel lehrt als Informatiker am KIT und koordiniert im Smart Data Solution Center Baden-Württemberg und Smart Data Innovation Lab Forschung und Innovation auf industriellen Datenschätzen.

Big Data In Practice

Big Data in Practice PDF
Author: Bernard Marr
Publisher: John Wiley & Sons
ISBN: 1119231388
Size: 39.72 MB
Format: PDF
Category : Business & Economics
Languages : un
Pages : 320
View: 4014

Get Book

The best-selling author of Big Data is back, this time with a unique and in-depth insight into how specific companies use big data. Big data is on the tip of everyone's tongue. Everyone understands its power and importance, but many fail to grasp the actionable steps and resources required to utilise it effectively. This book fills the knowledge gap by showing how major companies are using big data every day, from an up-close, on-the-ground perspective. From technology, media and retail, to sport teams, government agencies and financial institutions, learn the actual strategies and processes being used to learn about customers, improve manufacturing, spur innovation, improve safety and so much more. Organised for easy dip-in navigation, each chapter follows the same structure to give you the information you need quickly. For each company profiled, learn what data was used, what problem it solved and the processes put it place to make it practical, as well as the technical details, challenges and lessons learned from each unique scenario. Learn how predictive analytics helps Amazon, Target, John Deere and Apple understand their customers Discover how big data is behind the success of Walmart, LinkedIn, Microsoft and more Learn how big data is changing medicine, law enforcement, hospitality, fashion, science and banking Develop your own big data strategy by accessing additional reading materials at the end of each chapter

High Performance Big Data Analytics

High Performance Big Data Analytics PDF
Author: Pethuru Raj
Publisher: Springer
ISBN: 331920744X
Size: 13.47 MB
Format: PDF, Mobi
Category : Computers
Languages : un
Pages : 428
View: 1573

Get Book

This book presents a detailed review of high-performance computing infrastructures for next-generation big data and fast data analytics. Features: includes case studies and learning activities throughout the book and self-study exercises in every chapter; presents detailed case studies on social media analytics for intelligent businesses and on big data analytics (BDA) in the healthcare sector; describes the network infrastructure requirements for effective transfer of big data, and the storage infrastructure requirements of applications which generate big data; examines real-time analytics solutions; introduces in-database processing and in-memory analytics techniques for data mining; discusses the use of mainframes for handling real-time big data and the latest types of data management systems for BDA; provides information on the use of cluster, grid and cloud computing systems for BDA; reviews the peer-to-peer techniques and tools and the common information visualization techniques, used in BDA.

Data Science And Big Data Analytics

Data Science and Big Data Analytics PDF
Author: EMC Education Services
Publisher: John Wiley & Sons
ISBN: 111887613X
Size: 23.61 MB
Format: PDF, Kindle
Category : Computers
Languages : un
Pages : 432
View: 1478

Get Book

Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use. The content focuses on concepts, principles and practical applications that are applicable to any industry and technology environment, and the learning is supported and explained with examples that you can replicate using open-source software. This book will help you: Become a contributor on a data science team Deploy a structured lifecycle approach to data analytics problems Apply appropriate analytic techniques and tools to analyzing big data Learn how to tell a compelling story with data to drive business action Prepare for EMC Proven Professional Data Science Certification Corresponding data sets are available at www.wiley.com/go/9781118876138. Get started discovering, analyzing, visualizing, and presenting data in a meaningful way today!

Big Data Analytics

Big Data Analytics PDF
Author: Frank J. Ohlhorst
Publisher: John Wiley & Sons
ISBN: 1118239040
Size: 17.37 MB
Format: PDF, Mobi
Category : Business & Economics
Languages : un
Pages : 176
View: 2236

Get Book

Unique insights to implement big data analytics and reap big returns to your bottom line Focusing on the business and financial value of big data analytics, respected technology journalist Frank J. Ohlhorst shares his insights on the newly emerging field of big data analytics in Big Data Analytics. This breakthrough book demonstrates the importance of analytics, defines the processes, highlights the tangible and intangible values and discusses how you can turn a business liability into actionable material that can be used to redefine markets, improve profits and identify new business opportunities. Reveals big data analytics as the next wave for businesses looking for competitive advantage Takes an in-depth look at the financial value of big data analytics Offers tools and best practices for working with big data Once the domain of large on-line retailers such as eBay and Amazon, big data is now accessible by businesses of all sizes and across industries. From how to mine the data your company collects, to the data that is available on the outside, Big Data Analytics shows how you can leverage big data into a key component in your business's growth strategy.

Big Data Analytics

Big Data Analytics PDF
Author: Saumyadipta Pyne
Publisher: Springer
ISBN: 8132236289
Size: 34.85 MB
Format: PDF, Docs
Category : Computers
Languages : un
Pages : 276
View: 6747

Get Book

This book has a collection of articles written by Big Data experts to describe some of the cutting-edge methods and applications from their respective areas of interest, and provides the reader with a detailed overview of the field of Big Data Analytics as it is practiced today. The chapters cover technical aspects of key areas that generate and use Big Data such as management and finance; medicine and healthcare; genome, cytome and microbiome; graphs and networks; Internet of Things; Big Data standards; bench-marking of systems; and others. In addition to different applications, key algorithmic approaches such as graph partitioning, clustering and finite mixture modelling of high-dimensional data are also covered. The varied collection of themes in this volume introduces the reader to the richness of the emerging field of Big Data Analytics.

Deep Learning Convergence To Big Data Analytics

Deep Learning  Convergence to Big Data Analytics PDF
Author: Murad Khan
Publisher: Springer
ISBN: 9811334595
Size: 23.55 MB
Format: PDF, ePub, Mobi
Category : Computers
Languages : un
Pages : 79
View: 6154

Get Book

This book presents deep learning techniques, concepts, and algorithms to classify and analyze big data. Further, it offers an introductory level understanding of the new programming languages and tools used to analyze big data in real-time, such as Hadoop, SPARK, and GRAPHX. Big data analytics using traditional techniques face various challenges, such as fast, accurate and efficient processing of big data in real-time. In addition, the Internet of Things is progressively increasing in various fields, like smart cities, smart homes, and e-health. As the enormous number of connected devices generate huge amounts of data every day, we need sophisticated algorithms to deal, organize, and classify this data in less processing time and space. Similarly, existing techniques and algorithms for deep learning in big data field have several advantages thanks to the two main branches of the deep learning, i.e. convolution and deep belief networks. This book offers insights into these techniques and applications based on these two types of deep learning. Further, it helps students, researchers, and newcomers understand big data analytics based on deep learning approaches. It also discusses various machine learning techniques in concatenation with the deep learning paradigm to support high-end data processing, data classifications, and real-time data processing issues. The classification and presentation are kept quite simple to help the readers and students grasp the basics concepts of various deep learning paradigms and frameworks. It mainly focuses on theory rather than the mathematical background of the deep learning concepts. The book consists of 5 chapters, beginning with an introductory explanation of big data and deep learning techniques, followed by integration of big data and deep learning techniques and lastly the future directions.

Business Intelligence Strategy And Big Data Analytics

Business Intelligence Strategy and Big Data Analytics PDF
Author: Steve Williams
Publisher: Morgan Kaufmann
ISBN: 0128094893
Size: 73.13 MB
Format: PDF, Docs
Category : Computers
Languages : un
Pages : 240
View: 5138

Get Book

Business Intelligence Strategy and Big Data Analytics is written for business leaders, managers, and analysts - people who are involved with advancing the use of BI at their companies or who need to better understand what BI is and how it can be used to improve profitability. It is written from a general management perspective, and it draws on observations at 12 companies whose annual revenues range between $500 million and $20 billion. Over the past 15 years, my company has formulated vendor-neutral business-focused BI strategies and program execution plans in collaboration with manufacturers, distributors, retailers, logistics companies, insurers, investment companies, credit unions, and utilities, among others. It is through these experiences that we have validated business-driven BI strategy formulation methods and identified common enterprise BI program execution challenges. In recent years, terms like “big data” and “big data analytics” have been introduced into the business and technical lexicon. Upon close examination, the newer terminology is about the same thing that BI has always been about: analyzing the vast amounts of data that companies generate and/or purchase in the course of business as a means of improving profitability and competitiveness. Accordingly, we will use the terms BI and business intelligence throughout the book, and we will discuss the newer concepts like big data as appropriate. More broadly, the goal of this book is to share methods and observations that will help companies achieve BI success and thereby increase revenues, reduce costs, or both. Provides ideas for improving the business performance of one’s company or business functions Emphasizes proven, practical, step-by-step methods that readers can readily apply in their companies Includes exercises and case studies with road-tested advice about formulating BI strategies and program plans

Creating Value With Big Data Analytics

Creating Value with Big Data Analytics PDF
Author: Peter C. Verhoef
Publisher: Routledge
ISBN: 1317561929
Size: 42.86 MB
Format: PDF, ePub, Mobi
Category : Business & Economics
Languages : un
Pages : 316
View: 5604

Get Book

Our newly digital world is generating an almost unimaginable amount of data about all of us. Such a vast amount of data is useless without plans and strategies that are designed to cope with its size and complexity, and which enable organisations to leverage the information to create value. This book is a refreshingly practical, yet theoretically sound roadmap to leveraging big data and analytics. Creating Value with Big Data Analytics provides a nuanced view of big data development, arguing that big data in itself is not a revolution but an evolution of the increasing availability of data that has been observed in recent times. Building on the authors’ extensive academic and practical knowledge, this book aims to provide managers and analysts with strategic directions and practical analytical solutions on how to create value from existing and new big data. By tying data and analytics to specific goals and processes for implementation, this is a much-needed book that will be essential reading for students and specialists of data analytics, marketing research, and customer relationship management.

Digitale Transformation Und Unternehmensf Hrung

Digitale Transformation und Unternehmensf  hrung PDF
Author: Jochen Schellinger
Publisher: Springer-Verlag
ISBN: 365826960X
Size: 29.45 MB
Format: PDF, Docs
Category : Leadership
Languages : de
Pages : 434
View: 2483

Get Book

Dieses Open-Access-Fachbuch setzt sich empirisch und theoretisch mit Teilaspekten der digitalen Transformation und deren Konsequenzen für die Unternehmensführung auseinander. Die mit der Digitalisierung verbundenen neuen Technologien, Geschäftsmodelle sowie Denk- und Handlungsweisen verändern die Welt grundlegend und mit einer hohen Geschwindigkeit. Der Band greift aktuelle, praxisrelevante Fragestellungen und Herausforderungen des Megatrends Digitalisierung auf und bietet Informationen zu Themen wie plattformbasierte Dienstleistungen, Cybersicherheit, Ambidextrie, Big Data Analytics, Kryptowährungen, Smart Contracts, Online Marketing Tools, Augmented Reality und Social Influencing. Die 15 Beiträge wurden durch Autorenteams erarbeitet. Diese setzen sich aus Lehrenden und Forschenden sowie Vertreterinnen und Vertretern der Unternehmenspraxis mit akademischem Background zusammen. Sämtliche Beiträge basieren auf empirischen Analysen, die zumeist ihren Schwerpunkt auf Gestaltungsprobleme aus der Unternehmenspraxis legen, und beinhalten somit ein breites Spektrum an konkreten Fallbeispielen. Der Inhalt Grundlegende Aspekte der digitalen Transformation Führung und Organisation Human Resource Management Marketing Finanzwirtschaft Die Herausgeber Prof. Dr. Jochen Schellinger ist Studiengangsleiter Master of Science in Business Administration an der Berner Fachhochschule Wirtschaft. Prof. Dr. Kim Oliver Tokarski ist Professor für Entrepreneurship und Unternehmensführung und Leiter der Weiterbildung an der Berner Fachhochschule Wirtschaft. Prof. Dr. Ingrid Kissling-Näf ist Direktorin der Berner Fachhochschule Wirtschaft und Co-Leiterin des Instituts Sustainable Business.

Analytics In A Big Data World

Analytics in a Big Data World PDF
Author: Bart Baesens
Publisher: John Wiley & Sons
ISBN: 1118892704
Size: 17.69 MB
Format: PDF, Docs
Category : Business & Economics
Languages : un
Pages : 256
View: 2487

Get Book

The guide to targeting and leveraging business opportunities using big data & analytics By leveraging big data & analytics, businesses create the potential to better understand, manage, and strategically exploiting the complex dynamics of customer behavior. Analytics in a Big Data World reveals how to tap into the powerful tool of data analytics to create a strategic advantage and identify new business opportunities. Designed to be an accessible resource, this essential book does not include exhaustive coverage of all analytical techniques, instead focusing on analytics techniques that really provide added value in business environments. The book draws on author Bart Baesens' expertise on the topics of big data, analytics and its applications in e.g. credit risk, marketing, and fraud to provide a clear roadmap for organizations that want to use data analytics to their advantage, but need a good starting point. Baesens has conducted extensive research on big data, analytics, customer relationship management, web analytics, fraud detection, and credit risk management, and uses this experience to bring clarity to a complex topic. Includes numerous case studies on risk management, fraud detection, customer relationship management, and web analytics Offers the results of research and the author's personal experience in banking, retail, and government Contains an overview of the visionary ideas and current developments on the strategic use of analytics for business Covers the topic of data analytics in easy-to-understand terms without an undo emphasis on mathematics and the minutiae of statistical analysis For organizations looking to enhance their capabilities via data analytics, this resource is the go-to reference for leveraging data to enhance business capabilities.

Big Data Analytics With Spark

Big Data Analytics with Spark PDF
Author: Mohammed Guller
Publisher: Apress
ISBN: 1484209648
Size: 43.90 MB
Format: PDF, Mobi
Category : Computers
Languages : un
Pages : 277
View: 4940

Get Book

Big Data Analytics with Spark is a step-by-step guide for learning Spark, which is an open-source fast and general-purpose cluster computing framework for large-scale data analysis. You will learn how to use Spark for different types of big data analytics projects, including batch, interactive, graph, and stream data analysis as well as machine learning. In addition, this book will help you become a much sought-after Spark expert. Spark is one of the hottest Big Data technologies. The amount of data generated today by devices, applications and users is exploding. Therefore, there is a critical need for tools that can analyze large-scale data and unlock value from it. Spark is a powerful technology that meets that need. You can, for example, use Spark to perform low latency computations through the use of efficient caching and iterative algorithms; leverage the features of its shell for easy and interactive Data analysis; employ its fast batch processing and low latency features to process your real time data streams and so on. As a result, adoption of Spark is rapidly growing and is replacing Hadoop MapReduce as the technology of choice for big data analytics. This book provides an introduction to Spark and related big-data technologies. It covers Spark core and its add-on libraries, including Spark SQL, Spark Streaming, GraphX, and MLlib. Big Data Analytics with Spark is therefore written for busy professionals who prefer learning a new technology from a consolidated source instead of spending countless hours on the Internet trying to pick bits and pieces from different sources. The book also provides a chapter on Scala, the hottest functional programming language, and the program that underlies Spark. You’ll learn the basics of functional programming in Scala, so that you can write Spark applications in it. What's more, Big Data Analytics with Spark provides an introduction to other big data technologies that are commonly used along with Spark, like Hive, Avro, Kafka and so on. So the book is self-sufficient; all the technologies that you need to know to use Spark are covered. The only thing that you are expected to know is programming in any language. There is a critical shortage of people with big data expertise, so companies are willing to pay top dollar for people with skills in areas like Spark and Scala. So reading this book and absorbing its principles will provide a boost—possibly a big boost—to your career.

Mathematical Foundations Of Big Data Analytics

Mathematical Foundations of Big Data Analytics PDF
Author: Vladimir Shikhman
Publisher: Springer Gabler
ISBN: 9783662625200
Size: 20.98 MB
Format: PDF
Category : Computers
Languages : un
Pages : 273
View: 3757

Get Book

In this textbook, basic mathematical models used in Big Data Analytics are presented and application-oriented references to relevant practical issues are made. Necessary mathematical tools are examined and applied to current problems of data analysis, such as brand loyalty, portfolio selection, credit investigation, quality control, product clustering, asset pricing etc. – mainly in an economic context. In addition, we discuss interdisciplinary applications to biology, linguistics, sociology, electrical engineering, computer science and artificial intelligence. For the models, we make use of a wide range of mathematics – from basic disciplines of numerical linear algebra, statistics and optimization to more specialized game, graph and even complexity theories. By doing so, we cover all relevant techniques commonly used in Big Data Analytics.Each chapter starts with a concrete practical problem whose primary aim is to motivate the study of a particular Big Data Analytics technique. Next, mathematical results follow – including important definitions, auxiliary statements and conclusions arising. Case-studies help to deepen the acquired knowledge by applying it in an interdisciplinary context. Exercises serve to improve understanding of the underlying theory. Complete solutions for exercises can be consulted by the interested reader at the end of the textbook; for some which have to be solved numerically, we provide descriptions of algorithms in Python code as supplementary material.This textbook has been recommended and developed for university courses in Germany, Austria and Switzerland.